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ESTIMATION OF PARAMETERS IN COMPOUND WEIBULL DISTRIBUTIONS

By
Lee W. Falls

George C, Marshall Space Flight Center

Huntsville, Alabama

ABSTRACT

The two-parameter Weibull distribution has been recognized as a use-
ful model for survival populations associated with reliability studies
and life testing experiments, In the analysis of atmospheric data, the
distributions encountered are often a result of cembining two or more
component distributions, These compound distribucions are consequently
of interest to aerospace scientists, Presented is a method for estima-
tion of the parameters of a compound Weibull distribution with two shape
parameters, two scale parameters and a proportionality factor. The most
general case of estimation will be considered in addition to a number of
special cases that may be of practical value.
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TECHNICAL MEMORANDUM X-53422

ESTIMATION OF PARAMETERS IN COMPOUND WEIBULL DISTRIBUTIONS

SUMMARY

The two-parameter Weibull distribution has been recognized as a use-
ful model for survival populations associated with reliability studies
and life testing experiments. 1In the analysis of atmospheric data, the
distributions encountered are often a result of combining two or more
component distributions, These compound distributions are ccnsequently
of interest to aerospace scientists. This paper presents a method for
estimation of the parameters of a compound Weibull distribution with
density function

f(x) = of;(x) + (1 - a) £o(x), O<axl

where

vy 071 x/17 exp [-x"Y/6,], x 20, 87 >0, 73 >0

fl(x) 1

and

1

v

ramd exp [-x72/92], x 20, 62 >0, 72 >0.

£2(x) = 72 62

The parameters required are @, the proportionality factor, y,, 7-, 03
and 6. The most general case of estimation will be considered in addi-
tion to a number of special cases that may be of practical value,



I, INTRODUCTION

The Weibull distribution, derived in 1939 by W. Weibull, has been
recognized as an appropriate model in reliability studies and life test-
ing. Numerous methods for obtaining efficient estimates of the two
parameters of this distribution have been outlined in recent years [4,

10,11].

In actual physical applications, however, a mixture of two Weibull
distributions often seems to be a more desirable model. Distributions
resulting from mixing two or more component distributions are designated
as "mixed" or "compound." This situation is quite common in the analysis
of atmospheric data and consequently is of interest to aerospace scientists,
Compound normal, Poisson and exponential distributions have been studied
by A. C. Cohen, Jr. [1,2,3]. A method for estimating parameters of mixed
distributions using sample moments has been outlined by Paul R. Rider [7]
who considered compound Poisson, binomial, and a special case of the com-
pound Weibull distribution. A graphical procedure for estimation of
mixed Weibull parameters in life-testing of electron tubes is given by
John H, K, Kao [6]. Although graphical methods have value for locating
outliers, deriving initial estimates, and for determining whether the
distribution is as hypothesized, for estimation purposes the analytic
approach is probably superior.

This paper represents an attempt at estimating, by the method of
sample moments, the five parameters of the compound Weibull distribution
with density function

f(x) =of,(x) + (1 - ) £o(x), 0<ax<l (1)

where

-1
fi(x) = 71911x71 exp [-xyl/el], x 20, 6 >0, >0

. (2)

"2

0, 62>0, 72 >0

-l
Eo(x) = 7207'%777 exp [-x73/82], x

The parameters involved are two scale parameters 6, and 6o, two shape
parameters 7; and Y-, and the proportionality parameter (& which expresses
the probability that a given observation xj comes from the population f;.

A%



The compound cumulative distribution function is defined

F(x) =QFi(x) + (1 - &) Fo(x) = 1= 0 exp [~x71/61] - (1 - ) exp [-x73/og].
(3)
Figures 1 and 2 illustrate a generalized mixed Weibull probability

density function and its corresponding distribution function.

The most general case of estimation will be considered in which all
five parameters must be estimated from the data. Also, a numter of special
cases will be investigated in which certain parameters are know:- in advance
of sampling or are restricted in some manner. Included will be the special
case where 7, =1, i,e.,

£1(x) = 6] exp [-x/6,], 4)

which is the well-known exponential distribution. Estimating procedures
are greatly simplified in these special cases as there are fewer sample
moments involved in the estimating equations., Also, sampling errors are
reduced because of the elimination of the need for higher order moments,

II. ESTIMATION IN THE GENERAL CASE

The rth theoretical moment about the origin of f(x) is given by

o] [o o]

W o= o L/\xr fi(x) dx + (1 - @) \/er f-(x) dx, (5)
o

r
o

where £,(x) and f5(x) are defined as in equations (2). The first five
theoretical moments about the origin of (1) follow as
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where I' is the gamma function, i.e.,

(o]

rk) = /p yk-l e ™7 dy.

(o]

Employing the technique of equating population moments to correspond-
ing sample moments, the set of equations (6) becomes

7’
o) © 1/721“ -;1-;+1

@ o272 ¢ <—2—

1 1

m' -ael/71r(-1-+1>+ (1
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where m;. (i=1, 2, ..., 5) is the ith noncentral moment of the
sample.

The set of equations (7) is . system of five equations which must
be solved simultaneously for estimates of the five parameters «, 9,,
92, 71 and 7. For convenience in handling these equations, we wiil

make the following transformations where necessary in this paper.
(This notation will be used unless stated otherwise.)

Let

o) e
n=6;/72 [32=P<%+1> y2=T (;_ ) (8)
t33=f'<'3'+1> s =T ( +1>

1

Thus, the first three equations of (7) become

m} = avB; + (1 - @) ny, (9)
al, = av3pz + (1 - @) n®ye (10)
m) = aveps + (1 - @) n3ys. (11)

Solving (9) for v, substituting this expression into (10), and then
solving for n yields

m! (1-0} y182 * J- m!)Za(l-u) Bapive + mpo(1-0)2poRTYT + mioP(1-0)Blvz

(1-0) %582 + a(l-0)BY2
(12)

O



Substituting the expression for n from (12) back into (9) and solving
for v gives

m - (10 | mf(L-0¥ype V- @))2(1-00BaB2Ns + mAO(1-0ZBoBENE + m0P(1-0)BPVe (13)
v s

6 (1-0)2¢2p, + (1-0) BV

Upon substituting the expression for n from (12) and the expression for

v from (13) into equation (11), we have one equation in the three unknowns
Q, 71 and y». At this point, it is obvious that explicit expressions for
the unknown parameters ¢, y; and y> carnot be obtained. Therefore, it

is suggested that the following procedure be used to obtain a graphical
estimate of ¢, the proportionality parameter. This method is essentially
that of Kao [6] and is based upon the fact that a simple Weibull cumula-
tive distribution becomes a straight line in 1ln versus 'n-ln coordinates.
This method of estimating ¢ will produce a relatively small error in

the estimating procedure since ¢ is limited to the range 0 < x < 1.

(1) Plot the sample cum:lative distribution function for the
mixed data on special 1ln versus ln-ln paper and visually
fit a curve (called Weibull plot) among these points.*

(2) Starting at each end of the Weibull plot, draw two tangent lines

B e S
and denote them by?&ngand (1 - @)F> which are estimates of
aF;(x) and (1 - O)Fxo(x), respectively,

A
(3) At the intersection of (1 - )F, with the upper borderline

TN
drop a vertical line whose intersection with QF, as read from
the percent scale gives our estimate of .

See Figure 4 under Section IV for an illustration of this method.

Once an estimate of o has been determined graphically, solve equa-
tion (11) for 7, and v, by the following iterative procedure. This
procedure is takea from Cohen [1] and is a modified Newton-Raphson
method.

Assume a value for y, and solve equation (11) for a first approxi-
mation to y>. These first approximations can be substituted into (12)
and (13) to obtain first approximations to 6, and 65. The first set of
approximations are then introduced into the fourth equation of (6) to
approximate the fourthnon-central theoretical moment, pé.

*Special Weibull graph paper is available from Cornell University,
Ithaca, New York.



Let 71(1) denote the ith approximation to y; and let p;(i) denote
the ith approximation (corresponding to 71(i)) to p;. It should be

relatively easy to find approximations 71(1) and 71(i+1) such that the

!
4

between 71(1) and y

! ! .
sample moment m, is in the interval [p4(i), “4(i+1)]' Once the interval

been narrowed sufficientl the required
1(i+1) has Ys 9

estimate 7y, can be obtained by a simple linear interpolation as indicated

below.
1
71 My
1
71(i) Ha(i)
]
71 my
l'
71¢i+1) Ma(i+1)

The required estimate of y- can subsequently be cbtained from equation
(11), Once y; and y- have been determined by equation (l1), estimates
for 0, and 0., are obtained from equations (13) and (12), respectively.

Unfortunately, the quadratic solutions in equations (12) and (13)
result in more than one set of estimates. The problem of non-unique sets
of estimates was considered by Karl Pearson [15] and A. C. Cohen, Jr. [1]
in connection with mixtures of two normal distributions. Pearson sug-
gested choosing the set of estimates which gives closest agreement between
the sixth sample moment and the sixth theoretical moment after equating
the first [ive sample moments to the corresponding theoretical moments,
This procedure is followed for all acceptable sets of estimates.

Cohen [1] suggests, as an alternate procedure for resolving the
problem of multiple sets of estimates, that we might choose the set of
estimates which produces the smallest Chi-Square Index of Dispersion when
observed frequencies are compared with expected frequencies.

In the general case of estimation considered here, we are concerned
with a mixture of two Weibull distributions where the proportionality
factor ¢ is cstimated graphically from the cumulative frequencies and the
four remaining parameters are estimated by equating the first four sample
moments to corresponding theoretical moments. When confronted with more
than once sct of acceptable estimates, we adopt Pearson's suggested pro-
cedure and choose the set which produces the closest agreement between



the fifth noncentral moment of the sample m; and the theoretical
moment pg given by the final equation of (6).

The calculations described above may be carried out iteratively
with relative ease using the computer program included in this paper as
an Appendix. First approximations to initiate the iterative process
may be obtained using a graphical method such as that of Kao [6].

III. ESTIMATION IN SPECIAL CASES

A number of speci 1 cases that may be of practical value in which
certain parameters are known or are restricted in some manner are con-
sidered.

1. 0, known. With g, known, we must estimate the parameters Q,
62, 71 and 7 only. If we let v = /71, equations (9), (10) and (11)
become

mh =67l e+ A - oy, (14)
mh =07t g+ (1 - Aoy, (15)
my = O 92/71 Bs + (L - o)nys. (16)

Solving (14) for « gives

. (17)

Inserting this expression for o into equation (15) and solving for n,
we obtain after considerable algebraic manipulation

VB - mlt V(@) - 2avAE + vAERE - GlviBiBate + 4(0))AVBan + balviElV, - Galmiveiv,  (18)

vy ¥ - h; \

o ———— e d——— . ot



Substituting this expression for n back into (17) gives

Ve - iy £ V@D - mivAviEe + vAED - iv Bt + 4(0])3V3Rava + GapviElY, - dalaivarve
2vB 1 ¥o - h;*z

o = (A9

vinee - miv ¢ J(ué)%f - 200v3¥iBe + VACED - 4alvipBove + 4(n))2V3Rove + balviEly, - lalmive v

ﬂ{'*l

o)/ M -

By V2 - h;Vz

Now, upon substituting the expression for n from (18) and the expression
for & rrom (19) into equation (16), we have an equation in the two
unknowns ¥, and ¥, which may be solved by the iterative procedure
described in the general case. Once y; and y- have been determined,

we obtain our estimates for 65 and & from equations (18) and (19),
respectively. As in the general case, the positive and negative roots
resulting from the quadratic solution in (18) unfortunately results in
more than one set of estimates, As before, it is suggested that the
set of estimates which gives the closest agreement between the fifth
noncentral moment of the sample and the corresponding '"fitted" compound
curve be used.

2. 0o known7 With 65 known we need only estimate &, 6,, 73 and 7yao.
If we let n = 03/72, equations (9), (10) and (11) become

m} = avpy + (1 - ) 02/72 V1, (20)
m! = o B + (1 - @) 0772y, (21)
mi =avips + (1 - o) 92/72 V. (22)

Solving (20) for «x gives

' 1y
ml - O: \lfl

Q= . (23)
VP31 - @é/yg Vi

10



Inserting this expression for o into equation (21) and solving for v, we
obtain after considerable algebraic manipulation

nify - o2y ¥p * J;‘afv: - 2078V, + (m)2% - 4mjminv,Be + 4alu?ViB + 4(n))20%Bavo - 4ain’Vy VaB. (24)
62 -~ 20%1B2

v

Substituting this expression for v back into (23) gives

a - 6/%

ae = 25
. uts - ot by ¢ Lﬂ . h‘l;ﬂ:fz + (lé)'ﬂ: - talmloyBo + hé‘.@':h + 4(n))%0%0 ~ Gmindn VP 01/72' ( )
Zfe - 2an P2 =

Now, upon substituting the expression for v from (24) and the expression
for o from (25) into equation (22), we obtain an equation in the two
unknowns ¥y, and y» which may be solved by the iterative process described
previously. Once y; and y, are determined, we obtain our estimates for
0; and & from equations (24) and (25). As in case 1, 6, known, the posi-
tive and negative roots resulting from the quadratic solution in (24)
gives more than one set of estimates. Again, it is suggested that we
choose the set of estimates which gives the closest agreement between

the fifth noncentral moment of the sample and the corresponding "fitted"
compound curve,

3. 71 known, If 7, is known we must estimate o, 6;, 0, and 7y
only, Solving equation (9) for v gives

m) - (1 - 0) ny,
v = OB . (26)

Ingserting this expression for v iuto equation (10) and solving fo., 1,
we obtain

o’ (1-0) 182 + ¥ - (m))2(1-0)BoBTY2 + mioll-0)ZBuBays + mleF(1-0) By

(1-0)2y3Bo + a(1-0) Bz

(27)
11



Substituting this expression for n back into (26) gives

m = (l-0)¥y m, (1=0) VB * J- (m{)aa(l'a)ﬂaﬁf% + méa(l'd)éaeﬁf‘l’f + m302(1-0)BYV, (28)

v e

% (1-0)242p, + A(1-0) B2y

Upon substituting the expression for n from (27) and the expression for
v from (28) into equation (ll), we obtain an equation in the two unknowns
@ and Y- which may be solved by the iterative procedure described in the
general case, With o and Yy, determined we may solve equations (27) and
(28) for 0- and 0,, respectively., As before, the positive and negative
roots which result from the quadratic solution in (27) give more than
one set of estimates. Again, we choose the set of estimates which

gives the closest agreement to the fifth noncentral moment of the
sample,

An alternate method for estimation in this case would be to estimate
« graphically as in the general case and then solve equation (11) for yo
after the substitution of the expression for n from (27) and the expres=-
sion for v from (28) into equation (11). As before, 6, and 6, would
then be obtained fron. equations (27) and (28).

4, 7o known., With y- known, we must estimate ¢, 6, 0> and 73
only. As in case 3, 7; known, solving equation (9) for v gives

m) - (1 - 0) nyy
v = = . (29)

Inserting this expression for v into equation (10) and solving for n,
we obtain

m&(l'a)W1ﬁgiﬁV[“(m&)ga(l‘a)525§W2 + méa(l-a)2626§¢§ + méag(l'OOBiW2

n = .

(1'002¢§Ba + a(l‘ODB§W2

(30)

12

4



When we substitute this expression for n back into (29), we get

m) - (1-00¥% | ml(1-0Wape * v - (0))20(1-0)BbEV2 + mla(1-02BaB2VE + micP(1-oBtva | (31)

v e

% (1-0)242p, + o(1-0) B2y,

Upon inserting the expression for n from (30) and the expression for v
from (31) into equation (11), we obtain an equation in the two unknowns
o and 7; which may be solved by the iterative procedure described pre-
viously. With & and 7, determined in this manner, we now solve equa-
tions (30) and (31) for 97 and ©,, respectively. As before, we choose
the set of estimates which gives the closest agreement between the fifth
noncentral moment of the sample and the corresponding "fitted" compound
curve,

As in case 3, y; known, an alternate method for estimation
would be to estimate (f, the proportionality parameter graphically, and
then solve equation (11) directly for y, after the substitution of the
expression for n from (30) and the expression for v from (31) into
equation (11).

5. 71 =1. This is a special case of case 3, 7, known. Thus,
case 3 is reduced to mixing an exponential distribution with a Weibull
distribution where f; (x) in equaticns (2) is an exponential distribution
and fo(x) is a Weibull distribution. We need only estimate ¢, 75, 63
and 02.

With y; = 1, equations (9), (10) and (11) become

mj =av + (1 - Q) ny; (32)
m, = 2avZ + (1 - 0) n®yp (33)
my = 6av> + (1 - @) nys, (34)

where the only change in notation from previous cases is v = 9,.

13



Solving equation (32) for v gives

m! - (1 - Q) nyy

v = = . (35)

Substituting this expression for v into equation (33) and solving for
n gives

2m} (1-Q)yy * J2méa(1-a)2¢§ - 2(m'l)2oz(1-oz)qr2 + mLoF(1-0) ¥
b= . (36)
2(1-0) 3¢5 + a(l-0)y»

Inserting this expression for n back into (35) gives

s —

2m} (1-0) ¥y i~J2méa(l-a)2¢§ - 2(m})2a(l-0)yo + moF(1-0) ¥z

m'
v = ?f - Vi
Za(l'a)\.lfi + 032\[.(2

(37)

Now, upon substituting the expression for n from (36) and the expres-
sion for v from (37) into equation (34), we obtain an equation in the
two unknowns ¢ and ¥, which we may solve using the iterative procedure
described in previous cases. With minor simplifications, equation (34)
becomes

m) 2m{ (1-0) V¥, * \/Z-m:;OI(l-a)Z\Vf - 2(m{)2(1(1-a)\|;2 + mé(}z(l-a)wg
= 60 |=— = Yy - +
“ 2a(1-oowf + ®Va

m

'
3

(38)

2mf (1-0) ¥y % 2m5a(1-a)2wf - 2(m))2(1-0) V2 + moP(1-0)V¥n

(1-0)V¥s =
2(1-0)2y, + (1-A)V2



Once @ and y> have been determined from equation (38) we may obtain
our estimates for 0, and 0, from equations (36) and (37), respectively,

As in the other cases, we choose the set of estimates which
gives the closest agreement between the fifth noncentral moment of the
sample and the corresponding ''fitted" compound curve.

An alternate method of estimation would be to estimate ¢
graphically as in the general case and then solve equation (38) directly
for y-. As above, estimates for 65 and 6; would then be obtained from
equations (36) and (37).

6. 73 = 72 = unknown. Changing our notation slightly, we will let
71 = 72 = 7. Thus, we must estimate @, 7, 6; and 65. Now, let

i) wee@e)

6= o7 Bo =r<§+1).

With this notation, equations (9), (10) and (11) become

m;_ =qvp; + (1 - 0) np, (39)
m, =Qv3p, + (1 - @) n®p, (40)
my =av3ps + (1 - @) n°Bs. (41)

As before, solving equation (39) for v gives

m) - (1 - &) npy "
v = P . (42)

15



Inserting this expression for v into equation (40) and subsequently
solving for n, we have

m! (1-0) Bz * ¥ (1-0)p2 almlpy - (m})3p:]
n = (] (43)
(1-2)B1B2

Substituting this expression for n back into (42) gives

P -
i

my vm{(l‘a)ﬁz t JG(l-a)O[m;Bi - (m;)zﬁzl i (44)
v 0Py _ 0Py Bo ,J

Upon substituting the expression for n from (43) and the expression for
v from (44) into equation (41), we obtain an equation in the two unknowns
@ and y which may be solved by the iterative process described in the
general case. We may now solve equations (43) and (44) for 65 and 9,.

As in the other cases, the quadratic solution in equation (43) results

in more than one set of estimates, Again, we use the set of estimates
which gives the closest agreement to the fifth noncentral moment of the
sample,

As before, an alternate solution would be to estimate ¢ graph-
ically and then solve the resulting equation (41) directly for 7.

In the event that ¢ is known in advance of sampling we may
solve equation (41) directly for y and subsequently obtain 65 and 6,
from (43) and (44).

7. 71 = 7y~ = known., If we let y; = 7o = 7, the first three equa-
tions of (7) become

SURURRYL NS B i vy (1
m; = QU5 r<7+1)+(1 Q) 6, r‘<7+1> (45)
m' = <:xoi/7 r (-;- + 1> + (1 - Q) 92/7 r G + 1) (46)
N
Ve o 3 aly 3 \
my = a0, 7 (7 + 1> + (1 - ) 6, T <7 + 1/). n

16



Thus, we must estimate I, 6, and 67 only. For simplification, we will
let

1
r(-;ﬂ)

Now, equations (45), (46) and (47) become

ouei/7 + Q- Q) 92/7 =c, (48)
2/y 2/y
e, "+ (-0a) e,  =cp (49)
0+ 1 -0 627 =c
1 - 2/ = cz. (50)

Q = 62/7 (51)
s iy i/y *
% 62

Substituting the expression for ¢ from (51) into (49) and (50), we have
after considerable alg=braic manipulation the equations

1
91/7 92/7 - c,(ei“ + 92”) - ¢s (52)

1/7 1/7< /7 + e 7) =cy ( aly + 91/7 61/7 + 62/7> - ¢s. (53

Inserting the expression for 61/7 1/y from (52) into the left side of
equation (53), we obtain after simpfifying

ei/7 92/7 cy = Co <el/7 + ej;”) +c¢3 =0, (54)

1l

17



Solving (54) for 61/7 gives

1/ 9;/7 2 = €3
or'7 = . (55)
1 e1/7 o -
P 1~ Ca

Substituting this expression for 91/7 back into e7uation (52), we have
after simplitication the quadratic equation in e; 4

1
(ca = ) 107712 « (e - cpe) 617 + (epes - ) = 0, (56)

whose solution for 0; is

(37)

Without loss of generality, we may impose the restriction that 05 < 05
Thus, we obtain 0; and 0~ from equation (57) using the negative and
positive roots, respectively. Once we have determined 6; and 0,, we
obtain our estimate for « from equation (51).

&, 01 = 0» = known, If we let 67 = 65 = 6, the first three equa-
tions of (7) become

m! = ael/71 B+ (1 - @) 91/72 2] (58)

mho= oo™ gk @ - 6772y, (59)

= ao‘/71

=2
|

s+ (1 - ) 0772 4y . (60)

7

2 2 2 3 3,1/2
[(-c3 + cicp) + (c5 - bcyexex = 3cie + 4clc3 + 4c)) ] .

o R SR LY W D A e B

s

T h s o Sasr .
e i e, ot o AR o 5 d ALy e o



Thus, we must estimate the parameters Q, y; and y- only. As previously,
solving (58) for « gives us

m'l - 91/72 \Vl

o= (61)

91/7151 _ e1/ 7%1

Substituting this expression for ¢ into equation (59), we have after
simplifying

m) <92/7152 - 92/72\#2) + m; <el/72‘¥1 - 91/7151)

- o572, 72y 4 §Bl72y, ¢t/72g, = 0, (62)

Equation (62) is an equation in the two unknowns y; and 7, which may
be solved by the iterative procedure described for the general case of
estimation. Once 7; and Yy, are determined, we obtain our estimate for
@ from equation (61).

9. 63 = 02 = unknown, For this special case, it is suggested that
we solve for « graphically and subsequently follow the procedure out-
lined for the general case of estimation.

IV, AN ILLUSTRATIVE EXAMPLE

To illustrate the estimation procedure outlined in this paper for
the general case, we will consider a sample of 2000 observations selected
from a mixed population constructed by combining two Weibull distributions
with y, = 2,0000, ¢, = 10,0000, 7> = 0.8000, 6, = 1,0000 and o = 0,8000,

The sample is summarized in Table I, For the sample selected, ml = 2.4708,

m, = 8.6270, mj = 36,3408, m} = 174.9190 and m = 935.3733.
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TABLE I

A SAMPLE OF 2000 OBSERVATIONS FROM A MIXED WEIBULL POPULATION

CLASSES CLASS MARKS Y fo f CUMULATIVE FREQUENCY
IN PER CENT
0 -0.5 0.25 40 175 | 215 10.75
0.5 -1.0 0.75 113 78 191 20.30
1.0 - 1.5 1.25 17¢ 47 | 217 31.15
1.5 -2.0 1.75 205 30 | 235 42.90
2.0 - 2.5 2.25 216 20 | 236 54.70
2.5 - 3.0 2.75 206 14 | 220 65.70
3.0 - 3.5 3.25 180 10 1 190 75.20
3.5 - 4.0 3.75 147 7 154 82.90
4.0 - 4.5 4.25 112 5 117 88.75
4.5 - 5.0 4.75 80 4 84 92.95
5.0 - 5.5 5.25 54 3 57 95.80
5.5 - 6.0 5.75 34 2 36 97.60
6.0 - 6.5 6.25 20 1 21 98.65
6.5 - 7.0 6.75 11 1 12 99.25
7.0 - 7.5 7.25 6 1 7 99.60
7.5 - 8.0 7.75 3 1 4 99.80
8.0 - 8.5 8.25 1 1 2 99.90
8.5 -9.0 8.75 1 1 99.95
9.0 - 9.5 9.25 1 1 100.00
1600 400 2000

In the above table, £, = class frequencies from f,(x), f, = class fre-
quencies from f..(x), and f = class frequencies from the resulting mixed
distribution,

Figure 3 is a graph of the compound density function and its compo-
nent distributions. Notice at this point that y = 1 produces a J-shaped
function while ¥ > 1 produces a bell-shaped curve,

Employing the graphical technique described in Section I provides an
estimate of (v, the proportionality parameter, equal to 0.80 as shown on
Figure 4,
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Once our estimate of ¢ has been determined graphically, we solve
equation (11) iteratively for first approximations to y, and y>. Corre-
sponding first approximations for 0, and 6, are obtained from equations
(13) and (12), respectively, Each set of first approximations is intro-
duced into the fourth equation of (6) to approximate the fourth noncentral
theoretical moment, p;. Each set of first approximations is also sub-
stituted into the final equation of (6) to approximate the fifth non-
central theoretical moment u;, as suggested by Pearson [15]. The set of
estimates which gives the closest agreement between the fifth noncentral
moment of the sample m; and the corresponding "fitted'" compound curve
given by the final equation of (6) is the required set of estimates,
Utilizing the computer program given in the Appendix, we find that our
estimate of y, lies between 1,90 and 2,10. The corresponding estimates
for the remaining parameters, p, and pf, are as follows:

71 72 01 02 ™ "
1.90 2.30 11,52 1.29 343.8875 1926.6399
2.10 0.80 6.74 0.82 64,6006 287.5141

Our next approximation to 7, is obtained by simple linear interpolation
as indicated below.

71 HL
1.90 343,8875
2.0210 174,9190
2.10 64.6006

Substituting 7, = 2.0210 into equation (11), solving for y, and subse-
quently solving equations (13) and (12) for 0, and 6, we obtain

y> = 0,8339, 6, = 10.1496 and 6, = 0.9929. Introducing this set of
approximations into the final equation of (6) gives ue = 935.3646, This
value of ug is in such close agreement with the corresponding sample
moment mg = 935.3733 that we are justified in accepting this set of
approximations as our final estimates. However, if further preciseness
is desired, this iterative process may be continued to any desired degree
of accuracy.
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The computer program outlined in the Appendix gives all possible
solutions to the estimating equations, Specifically, equations (12)
and (13) produce four solutions resulting from the four combinations of
the positive and negative signs prefixing the radicals; i,e.,, the com-
binations are (-,-), (-,+), (+,-) and (+,+). It was discovered that
the computer program printout gave closest agreement between the theo-
retical moment ps and the sample moment mt when the combination (-,-)
was used,

Comparisons of expected with observed frequencies, along with a com-
parison of observed and expected distribution functions, are presented in
Table II. It also seems appropriate to compare the observed frequencies
for the mixed sample with these same frequencies assuming that the sample
fits a simple Weibull distribution, This will prove or disprove that our
mixed sample could be treated as a simple Weibull distribution. Cohen's
maximum likelihood estimation procedure [4], was used to derive estimates
for the parameters, and the resulting expected frequencies were obtained.
Notations used in Table II are as follows:

Hh
]

observed frequencies for mixed data.

F, = observed distribution function for mixed data.

feo = expected frequencies using estimates derived in this
report,
F, = expected distribution function using estimates derived

in this report.

feg = expected frequencies assuming data fits a simple Weibull
distribution,

F.. = expected distribution function assuming data fits a simple
Weibull distribution,

The agreement between observed frequencies for the sample and
expected frequencies using the derived estimates is very good as shown
in Table II. The corresponding observed and expected distribution func-
tions are in very close agreement with the maximum absolute difference
of 0,0050 occurring at the class 3.5 - 4.0, Comparing this value with
the Kolmogorov-Smirnov statistic, we see that

N _ 2000 =
D, = D299° = 00364

gives an excellent "goodness-of-fit'" at the 99 percent level of confi-
dence,
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TABLE II

OBSERVED AND EXPECTED FREQUENCIES FOR 2000 OBSERVATIONS
FROM A MIXED WEIBULL DISTRIBUTION

CLASSES £, fo fos Fy Fe Fes

0~ 0.5] 215 [211.0 | 143.3 .1075 | .1055 | .0717
0.5 ~ 1,0 | 191 |192.9 | 243.2 .2030 | .2020 | .1932
1.0 ~ 1.5 | 217 |219.1 | 271.9 .3115 | .3116 | ,3292
1.5 - 2,0 | 235 |237.8 | 265.8 4290 | .4305 | .4621
2.0 - 2.5 | 236 |238.9 | 239.9 5470 | .5499 | ,5821
2.5 - 3.0 | 220 [222.1 | 204.6 .6570 | .6610 | .6843
3.0 - 3.5} 190 |191.7 | 166.8 .7520 | .7569 | .7677
3.5 - 4,0 | 154 1154.3 | 130.9 .8290 | .8340 | .8332
4,0 ~ 4.5 | 117 |116,2 99,4 .8875 | .8921 | .8828
4,5 - 5.0 84 82.1 73.3 .9295 | .9332 | .9195
5.0 = 5.5 57 54,6 52,6 .9580 | .9605 | .9458
5.5 = 6.0 36 34.3 36.8 .9760 | .9776 | .9642
6.0 - 6.5 21 20.4 25,2 .9865 | .9878 | .9768
6.5 - 7.0 12 11,5 , 16.9 .9925 | .9935 | .9852
7.0 « 7.5 7 6.2 11,1 .9960 | .9966 | .9908
7.5 - 8.0 A 3.2 7.1 .9980 | .9982 | .9943
8.0 - 8.5 2 1.6 4,5 .9990 | .9990 | .9966
8.5 = 9,0 1 .8 2.8 .9995 | .9994 | .9980
9.0 - 9.5 1 A 1.7 | 1.0000 | .9997 | .9988

Comparing F, with Feg shows a maximum absolute ditference in the
distribution functions of 0,0358 occurring at the class 0 - 0,5, Since
the Kolmogorov-Smirnov statistic

N _ 2000 _
D, = D22°° = 0,0304,

this value of 0,0358 is sufficient to reject the hypothesis that our
mixed distribution could be considered a simple Weibull distribution,

As an alternate goodness-of-fit test for agreement between observed

frequencies and expected frequencies using the derived estimates, the X~
index was calculated and the results are as follows:
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X2 = 1,2669 d.f. = 10 P(XZ > 1.2669 = 0.995).

Thus, in consideration of the low X2 index of dispersion, we may conclude
that we have an excellent fit for the chosen sample,.

V. CONCLUSIONS

It is an accepted fact that the method of moments is not (except
for distributions such as the normal, binomial, and Poisson) the most
efficient procedure for estimating the parameters of a frequency distri-
bution, Methods having maximum efficiency, such as the method of maxi-
mum likelihood are more desirable. However, in the case of the mixed
Weibull distribution with its five parameters, the maximum likelihood
estimating equations are almost intractable,

The central, noncentral, and factorial moments of this distribution
were invest gated, and it was discovered that the noncentral moments
possessed optimum characteristics for the development of estimating
equations. A comparison of noncentral sample moments with the theo-
retical moments for the sample selected showed an error of 0.09 percent
for the first moment, 0.44 percent for the second moment, 1.64 percent
for the third moment, 4.94 percent for the fourth moment, and 12,73 per-
cent for the fifth moment. This progressive increasing percentage of
nonagreement between sample moments and theoretical moments illustrates
the large sampling errors involved in the use of higher order moments.
Using only the first three sample moments with their relatively low per-
centage of error in the estimating equations produced very good agree-
ment between final estimates and the population parameters y,, 7>, 61
and 6-~. Sheppard's corrections for grouped data were applied to the
sample moments in order to increase this agreement, but produced no
significant change in the results; therefore, the corrections were not
used in the estimating equations.

This paper presents an estimating procedure that produced very good
results for the sample chosen. The use of electronic digital computers
makes the somewhat involved method practical and applicable to experi-
ments in which the mixed Weibull distribution is the appropriate
statistical model,

In the author's opinion, the estimating procedures outlined in this
report warrant further investigation for increase in efficiency, and
improvement and simplification of form for the estimating equations
involved,
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APPENDIX

COMPUTER PROGRAM FOR ESTIMATING THE PARAMETERS
OF A MIXED WEIBULL DISTRIBUTION

The author wishes to acknowledge the assistance of Mr., Raymond
Smith of the Computation Laboratory, MSFC, for his work on the CDC 3200

computer program.
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LOAD DATA

FIRST, TWO TABLES ARE READ IN STARTING IN XI AND FI

DGl - Ay,
DG2 - Ayo
EGl - TERMINAL 73
EG2 - TERMINAL 7>

BGAML - BEGINNING 7,

BGAM2 - BEGINNING 72

EN - SAMPLE SIZE 2000 USED FOR THIS PROGRAM
ALP - 00 .8 USED

NVI - NUMBER OF VALUES IN THE TABLES

K - AN INTEGER 1-»4

THE COMPUTED py SHOULD APPROACH mg

THIS CAN BE ACCOMPLISHED BY A SERIES OF RUNS VARYING Ay,, Ays, 71, AND 7»
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LEGEND

my - PML 9, - THL
mL - PM2 0~ = TH2
m} - PM3

m; - PM4

m; - PM5

31 - Bl

B - B2

Bs - B3

¥; - PSIL

V., - PSIZ

Y5 - PSI3

u% - UP5

N - EN SAMPLE SIZE

n - EN ONCE THE ABOVE N IS USED THE LOCATION EN IS NO LONGER NEEDED,
IT IS USED TO STORE n,

v =V
ENP - IN EQUATION 12, IF THE POSITIVE VALUE OF THE RADICAL IS USED,

ENM - IF THE NEGATIVE VALUE IS USED,

VP - IN EQUATION 13, IF THE POSITIVE VALUE OF THE RADICAL IS USED,

VM - IF THE NEGATIVE VALUE IS USED

THE FOLLOWING FOUR COMBINATIONS ARE POSSIBLE, DEPENDING UPON WHAT NUMBER
IS READ INTO LOCATION K:

REGARDLESS OF WHICH COMBINATION IS USED, BEFORE THE
PROGRAM IS CONTINUED, THE VALUE OF EQUATION 13 IS
STORED IN V AND THE VALUE OF EQUATION 12 IS STORED
IN EN.

A"
+
+

+ v + 3

S~ o= R
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